IGN
 Gravity corrections to measured geometric slopes in Puna, Argentina, at 4000 meters Above the sea level
 Sergio Cimbaro, Diego Piñón

Argentine National Geographic Institute
1- ABSTRACT
 Puna, Argentina.
 of orthometric and normal heights along benchmarks with alitudes that oscillate between 3000 to 4000 meters. GPS observations made over the benchmarks have also permitted the calculation of the position of the Geoid in the area.
 the measurements and the ones obtained from the EGM08 model.

2- INTRODUCTION

Plata tide gauge

At this time the Argentine National Geographic Institute (IGN) began a field campaign in order to establish over 30,000 levelling benchmarks over 200,000 km.
The benchmarks that compose the vertical reference system were classified according to the precision in which the elevation was defined. Three precision orders were established as follows:
High Precision Leveling Lines
These leveling lines divide the country into closed and peripheral polygons (on the coastline or international boundaries).
Accuracy: $\quad 3 \cdot \sqrt{\text { Distance }[k m}][\mathrm{mm}$
Precision Leveling Lines
These leveling lines were developed inside the polygons generated by the high precision lines.
Accuracy: $\quad 5 \cdot \sqrt{\text { Distance }[\mathrm{km}]}[\mathrm{mm}$
Topographic Leveling Lines
These leveling lines are used to densify some areas.
Accuracy: $7 \cdot \sqrt{\text { Distance }[\mathrm{km}]}[\mathrm{mm}]$
Gravity measurements were taken over the benchmarks that compose the High Precision Levelling Lines. The orthometric heights of the benchmarks were obtained using this data.

The IGN is currently undertaking the final adjustment of the altimetric network. In order to do this, it is imperative to measure the remaining geometric slopes in the area of the Puna.

Several measurement methods have been utilised in this area.
High Precision Geodetic Leveling:
Trimble DiNi 12 and Invar rods were used in order to ensure the precision standards stablished by the IGN. The equidistance between the rods was 50 meters at all times. The 28 benchmarks were measured twice and the mean value of each slope was used to determine the calculations.

Gravimetric Observations:
A LaCoste \& Romberg G43 gravimeter was used. The estimated error of the gravity readings was approximately 0.5 mGal . The gravity determinations were linked to the IGSN 1971 datum

Differential GPS:

Double-frequency GPS equipment was used to determine the precise position of each benchmark. The sessions were two hours long to ensure centimetric precision of the coordinates. GAMIT / GLOB K and GPPS / FILLNET software was used for postprocessing GPS data. The coordinates of the benchmarks were obtained in the ITRF05 IGS05 reference frame

4-CALCULATION \& RESULTS

1- Gravity Reductions
A-Remove Bouger Plate: $-0.1119 * \mathrm{H}$ [mGal] B-Free-Air Reduction: +0.3086 * H [mGal] C-Restore Bouger Plate: $-0.1119^{*} \mathrm{H}[\mathrm{mGal}]$ D- Topographic correction (Hammer Chart). $\sum \rho \frac{2 \pi}{n} G\left(r_{i+1}-r_{i}+\sqrt{r_{i}^{2}+\Delta h_{i}^{2}}-\sqrt{r_{i+1}^{2}-\Delta h_{i}^{2}}\right)$

The SRTM v4 model was used to implement topographic corrections. Other used parameters used were: $\rho=2.67 \mathrm{gr} / \mathrm{cm}^{3}, \alpha=2 \pi / \mathrm{n}\left(\mathrm{n}=360\right.$ or $\left.\alpha=1^{\circ}\right)$ $\mathrm{G}=6.67428^{*} 10^{-11 *} \mathrm{~m}^{3 *} \mathrm{~kg}^{-1 *} \mathrm{~s}^{-2}, \mathrm{r}=100 \mathrm{~m}$ maximum distance $=160 \mathrm{~km}$

HammerChart

2- Orthometric and Normal Heights Calculations
Orthometric Height Normal Height
$H^{0}=\frac{C}{g} \quad H^{N}=\frac{C}{\bar{\gamma}}$
$C=\int_{0}^{H} g \cdot d H \quad C=\int_{0}^{H^{N}} \gamma \cdot d H$
$\bar{g}=\frac{1}{H} \int_{0}^{H} g \cdot d H \quad \bar{\gamma}=\frac{1}{H^{N}} \int_{0}^{H} \gamma \cdot d H^{N}$

3-Ellipsoidal Heights
After calculating benchmarks positions the Geoidal Undulation (IGNN) was calculated: $N=h-H$
Finally these values were compared with EGM08 Geoidal Undulation Model (EGM08N).

5- BEHAVIOR OF EGM08 IN ARGENTINA

Data sets composed of 664 leveling and GPS benchmarks arranged along the Argentine territory was used to calculate the differences between IGN and EGM08 geoidal undulations.

